Places

About
Foundation
Partner Schools
Print Archive
Peer Review
Submissions
Donate
Contact


Departments

Critique
Essays
Gallery
Interviews
Multimedia
Partner News
Peer Reviewed
Poetry & Fiction
Projects


Topics

Architecture
Art
Books
Cities + Places
Community
Culture
Design History
Design Practice
Development
Ecology
Economy
Education
Energy
Environment
Film + Video
Food
Geography
Health + Safety
History
Housing
Ideas
Infrastructure
Landscape
Photography
Planning
Politics + Policy
Preservation
Public + Private
Reputations
Sustainability
Technology
Transportation
Urbanism
Water



Design Observer

About
Books
Job Board
Newsletters
Archive
Contact



Comments (3) Posted 06.10.13 | PERMALINK | PRINT

Essay: Eric W. Sanderson

Roads to Rails


The Streetcar of the Future


Streetcar tracks awaiting installation, Toronto. [Photo by Samuel Bietenholz]

STELLA: He smashed all the lightbulbs with the heel of my slipper.
BLANCHE DUBOIS: And you let him? Didn’t run, didn’t scream?
STELLA: Actually, I was sorta thrilled by it
.
— Tennessee Williams, A Streetcar Named Desire (1947)

When we begin to value the land for what it is and build cities worth living in, density develops, and density makes things happen. Some of those happenings are economic, in the sense of improved productivity; others are environmental, in terms of fewer resources consumed. Density also has a lot to offer in terms of our trades of time for space.

Past transportation revolutions have been rooted in land. The railroad companies were encouraged to expand west by massive giveaways of public land; the streetcar operators were given monopolies to encourage their development; and the automobile industry received the greatest gift of all — roads — carved out of the public domain, bought or appropriated from private citizens. Many people and innumerable beasts were hurt in the process, so that other folks could be whisked on their way. Such radical efforts were necessary to make 20th-century transportation feasible, affordable and widespread in America.

A similarly radical approach is required today, but without all the giving and the taking. It’s simple. We just need to decide to make better use of the land we all already own together: the public roads. Our roads today suffer from an identity crisis. We want them to provide thoroughfares for private cars, routes for public transit, spaces for parking, lanes for bicycles, sidewalks for pedestrians, access for people with disabilities, space and light for buildings, drainage for storm water, and even room for trees and flowers! Take a look out your window — the streets are contested territory, trying to be all things for all people.

The suburbs at least did this part right: They were decisive. Streets were for cars, not for bikes or pedestrians or anything else. Sidewalks were to be narrow, ornamental or nonexistent, since it was assumed people would be driving. Public transportation was not a priority, because everyone has a car or two or three. As suburbs expanded, zoning codes mandated off-street parking for houses, offices and mini- and jumbo-malls, which like medieval castles surrounded by moats of asphalt, are best approached on a trusty steed: the motorcar.

Though decisive, these choices were all decisively wrong from the perspective of energy efficiency, national security and long-term economic productivity. Let’s see what we can do to make them right again.





Top: Spadina Streetcar, Toronto. [Photo by Erik Mauer] Bottom: Light rail, bus and streetcar, Portland, Oregon. [Photo by Kevin Zolkiewicz]

A Brief Physics Lesson
In choosing how to use our precious street space, we need to begin with the laws of physics, rules of the universe that explain how and why different kinds of transportation use different amounts of energy. Better streets will move more people and use less energy. Lower-energy forms of transportation will be easier to supply with fuels other than oil; denser cities will require more efficient ways of moving. How much energy and how many people is a matter, at least initially, of physics.

Recall that energy is “that which changes the physical state of a system”; physical state includes your geographic location. In a frictionless vacuum, the energy applied to accelerate an object would be all that is ever needed; once in motion an object would never stop. Sir Isaac Newton showed three and a half centuries ago that the energy of motion — the kinetic energy of an object — is one-half its mass times its velocity squared (½ × m × v²). This means heavier objects require more energy in proportion to their weight; faster objects require four times as much energy to double their speed. Thereby Newton gave us the first two rules to increase transportation energy efficiency:
Rule 1: Be lighter.
Rule 2: Go more slowly.
Note: Rule 2 matters four times as much as Rule 1.
The energy to put a vehicle in motion is lost when we stop at a red light or to let a pedestrian cross. It hasn’t disappeared in a universal sense because energy is always conserved, but for our immediate purposes, it is gone, turned into manifestly less useful heat, vibrations and brake squeal. The amount of energy required to get back up to speed is the same as what was lost, which suggests for efficiency:
Rule 3: Minimize starts and stops.
Note: Rule 3 explains why most cars make better mileage on the highway than in town.
Since we don’t live in a vacuum, moving requires additional energy to overcome friction. Friction for most vehicles comes from two sources. One is rolling resistance from tires scraping along the ground. It is a function of gravity, the vehicle’s mass, tire design and the road surface. Different materials scrape differently: An inflated tire rolls with 6–7 percent less friction than a poorly inflated one, enough to affect your gas mileage; steel wheels running along steel rails, in contrast, roll along with 400 percent less friction than an inflated tire. Since less friction means less wasted energy, we have:
Rule 4: Slide, don’t scrape.
Note: Rule 4 explains why trams are so successful at moving heavy loads.
The other source of friction is air. Air resistance describes how much air gets pushed around as a vehicle moves through it. It is a function of the vehicle’s cross-sectional area, drag coefficient (which measures its aerodynamics) and speed. Think Camaro vs. Lincoln Navigator: The Camaro tries to slip through the air, while the Navigator just busts through. In either case, the air resistance increases with the velocity cubed (½ × ρ × dc × A × v³, where ρ is the density of the air, dc is the drag coefficient, A is the cross-sectional area of the car, and v is velocity or speed), which means that doubling your speed requires eight times more energy, assuming no wind.
Rule 5: Be sleek.
Note: Rule 5 is why racecars and jets are streamlined.
Putting these five rules of physics together, as David MacKay does in his book on sustainable energy, means that the break-even point between rolling resistance and air resistance for heavy, rubber-wheeled vehicles like cars is about 15 miles per hour. Below 15 miles per hour your car’s weight and speed matter most in how much energy it expends. Above 15 miles per hour, shape and, especially, speed matter most. For an average car, energy consumption bends upward more stiffly as speed increases, which is why back in the 1970s, the Nixon administration introduced national speed limits of 55 miles per hour or less. These tradeoffs also present a design problem for automakers: How do you make a car efficient both in town and on the open highway? The answer is, you can’t really. But you can make different choices about how you travel.



Click image to enlarge.

In town, where motion is dominated by low speeds and frequent stops, you can save energy by choosing a mode of transportation that is lighter (Rule #1), rolls with less resistance (Rule #4) and moves less rapidly (Rule #2). Walking, bicycling and in-line skating all suggest themselves, rather than automobiles. Personal modes move a minimum of mass (our bodies plus the bike or skates) at low speeds, with little rolling resistance and smaller cross-sections. Though some of the energy is wasted in the inefficiency of our legs and backs, we don’t mind: We call it exercise. Biking beats out walking for efficiency because the small gain in vehicle mass is more than compensated for by the increased efficiency of the bicycle’s gears and pedals, making biking fast and fun, especially on paths uncluttered by pedestrians or motorcars.

Out of town, where higher speeds are required and stops are less frequent, vehicles make more sense. For fast-moving objects, like cars, energy loss is dominated by drag from pushing the air around. Under these conditions, your vehicle’s weight matters less than its shape, so you can save energy by making your mode more streamlined (Rule #5) and — unhelpfully — by moving less rapidly (Rule #2). Since making better trades of time for space is the point, especially over longer distances, the least you can do is split the energy use. More heads per cross-sectional area, like on a train, dramatically lowers the per-capita energy expenditure. The very best way to improve the fuel efficiency of your car is also the easiest way: Share with someone else.

Car pools are the only practical way to make up for the notorious inefficiency of internal combustion engines. Although it’s been over 120 years since Benz sold his first motorwagen, automobile energy efficiencies remain stuck in the 18–25 percent range, not so different from you riding your bike. (Both you and your V6 are turning carbon-based chemical energy into motion.) Cars weigh more than people, so on a per-passenger basis, their energy efficiency drops even more. Consider that if you weigh 200 pounds and drive a run-of-the-mill 3,000-pound car, then your weight is just 6.25 percent of the total mass moved. If the energy to move you is consumed at 20 percent efficiency, then only 1.25 percent of all of the energy in all of the gasoline in your car is used to move you down the road. Energy loss accelerates as you do. Electric motors for electric vehicles do a better job. Electrical engines typically obtain 80–95 percent efficiencies, because they are lighter and because electromagnetism skips the explosions and attendant hot gases, noise and vibrations of combustion. But there’s a catch. Electric motors need a constant supply of electrons to turn the wheel. Those electrons come from either a power cord connected to a power source, which is sending them in real time, as in streetcars, or they supply them on-board using a rechargeable battery. As Edison and Planté discovered in the nineteenth century, batteries are heavy because of the metals (like lead) required to hold the charge. Conventional lead-acid batteries add to the weight of the vehicle, which requires more energy to move because it’s heavier, which requires a larger battery, which adds to the weight, etc. This ugly feedback loop leads to rapidly diminishing returns, and explains why, a century after Edison and Ford gave it a go, we are still struggling to make a speedy, long-distance, affordable electric car (though we will consider a few modern takes on the Electrobat below). The physical truth is a pound of gasoline holds 350 times more energy than a pound of lead soaked in sulfuric acid. (Lithium-ion batteries, the ones in your laptop, do better — gasoline:lithium-ion, 118:1 — but are more expensive.)

SUVs zooming down the expressway at 70 miles per hour break every rule of energy efficiency, but manage to do what they do by relying on the remarkable energy density of their fuel. Aircraft, heavier and airborne, are even more dependent. Thus, if we value the ability to fly across the country, or to another continent, we might want to save our energy-rich oil for air travel. Back on the ground, we need to find a better way to trade time for space. [1]



Click image to enlarge.

A Better Car
A curious fact about cars is that most of them are designed to carry more than one person. At maximum occupancy (four to eight people per vehicle), modern cars are actually reasonable in terms of their energy expenditure: They use only 300–500 percent as much energy per person per mile as someone walking or bicycling, but go on average a lot faster. As we all know from counting heads during the morning commute, most trips in personal motor vehicles are taken by lonesome drivers. Add some carpooling trips and family errands, and the overall average vehicle occupancy for personal automobiles in America works out to 1.59 passengers per trip (in 2009).

At this kind of occupancy, a car’s energy efficiency, never great, collapses: A solo driver in a Ford Focus uses 600 percent more energy per person per mile than a pedestrian; a Camaro spends 1,000 percent as much. Thus, if you are going to drive, please share.

Hybrid cars are more energy efficient by making the best of a bad situation: They have two power trains, one electric and one internal combustion. They use a battery to start the car and run at low speeds; at higher speeds where more energy is required, or when the battery is drained, the gasoline engine takes over. Most hybrids also have regenerative braking that recaptures about 20 percent of the energy of slowing and stopping and shunts it back to the battery. (Gas cars can’t have this feature because brakes can’t regenerate gasoline, just electricity.) Despite the extra pounds required by the extra machinery and battery, hybrid cars are typically twice as energy efficient as internal-combustion-only automobiles of the same model. The problem with hybrids, beyond their purchase price, is that they still require gas as their sole energy source. Though more efficient, they are just a lighter version of oil’s chains.

Better automotive energy efficiency can be obtained from a plug-in hybrid. As late as the summer of 2012, there was only one such vehicle for sale in the United States: the Chevy Volt, though others were in the works. Plug-in hybrids are truer “hybrids” in the sense that they can use energy from electricity or from gasoline, but can get by on just one or the other. The Volt also deploys regenerative braking to save energy, and though its range is only 35 miles on electricity, that’s enough to push its energy consumption per mile to only 1.5 times as much as a person walking at maximum occupancy (four passengers per Volt), and only five times a person walking at usual occupancy. Not bad, considering the Chevy Volt weighs in at almost two tons.



Click image to enlarge.

The most energy-efficient automobiles are, not surprisingly, electric. True electric cars eschew gasoline entirely and instead receive all their energy from a power plant or a wind farm stored in a battery and delivered via a plug. The most efficient electric car on the market in 2012 was the Nissan Leaf, which at full passenger capacity is actually more energy efficient than a person walking (!), and only three times more energy-consuming per person than biking. The Leaf is the latest in a small collection of electric cars sold by Ford, General Motors and various foreign vendors over the last twenty years. Probably the best known American electric car was General Motors’ EV1, the first and only one to carry the GM nameplate, which developed a small, incredibly devoted following in California at the turn of the 21st century. When GM canceled the three thousand leases on the EV1 in 2003, insisting all its owners return them, and then crushed the cars in the desert or disabled them for museum objects, stunned customers complained, picketed and made a movie: Who Killed the Electric Car?

It turns out that many agents contributed to the demise of the EV1, not the least of which was the electric car’s old nemesis: the rechargeable battery. The EV1 originally had a range of about 60 miles on a charge; battery upgrades, using nickel-hydride batteries, like the rechargeable ones in a toy car, eventually pushed the range up to 160 miles, but also upped the cost considerably. The 2012 Nissan Leaf has 48 lithium-ion battery modules, which weighs 660 pounds, affording the Leaf about a 100-mile range between charges.

Batteries, lest we forget, also need to be charged. Fast charging requires a dedicated charging station at high voltage (240 V; the usual household voltage is 110 V). Buying a Leaf doesn’t include the purchase and installation of a garage-mounted charger for rejuvenation at home. Communal charging stations, the equivalent of gas stations, are doable, of course; we had plenty of them in electric truck garages of the 1920s. Perhaps they could be deployed again in take-out, drop-in battery exchanges such as the ones imagined back on Broad Street in 1895, if manufacturers adopted consistent standards for battery shape, size and connection.

There is another automotive solution, though, suggested by the problems of the Leaf, which is to give up on range and speed expectations based on gasoline, and instead design electric cars that work well on their own terms, in town, at lower speeds. Mrs. Ford by all accounts was very happy with her electric car, which in fact was an early prototype of what we would call today a “neighborhood electric vehicle” (NEV), a kind of souped-up golf cart. These smaller, slower vehicles have conventional lead-acid batteries and an electric motor, they charge at a standard household outlet and can speed very happily up to 25 miles per hour while carrying 1,000 or more pounds of cargo. You have probably seen them zipping about in a gated community or amusement park. The police, the military and zookeepers use them, too. The government does not allow NEVs to play with gas cars on fast-moving boulevards or highways, restricting them to streets where the speed limit is under 35 miles per hour. (35 is not bad; it’s the limit of many city streets.) Chrysler has a division that sells six models of NEVs under the brand name GEM for $8,000–$12,000 each, doors extra. [2]



Click image to enlarge.

A Better Streetcar
I wish electric cars, small or large, could elegantly sweep in and replace gasoline cars and solve all our problems with a wave of the technological wand, but I can’t see how it happens without a major breakthrough in automotive battery technology, which has eluded us for a century or more. The fact is that the only forms of powered transportation that give the kind of per-person bang-for-the-microwave-minute that we need are shared modes of transportation, particularly ones on rails: trains, light rail and the streetcar.

Streetcars are the closest we know to the ideal motorized transportation. They roll with low resistance on steel wheels on steel rails, driven by efficient electric motors attached to the grid via overhead wires or underground cables, deploying regenerative braking for stopping. And they carry tens to a hundred passengers at a time, which gives more heads per cross-sectional area, thus dramatically dropping per-capita energy use. At full occupancy, streetcars best rival walking and biking in energy efficiency. Compared to a bus, they are more energy efficient, have more leg room, offer better views and are more genteel; they are also more fun. Who doesn’t like to ride a streetcar? Once they are laid down, the rails reflect a tangible, significant investment in the city, something a bus stop can never hope to do. Some people don’t like the overhead lines, but those can be buried so as not to interfere with the view of the phone and power lines that parallel so many American roadsides.

If streetcars ran on streets where they were the only vehicle, we could make them lighter, streamlined and more stylish. They could also go faster because there would be no unpredictable cars to cross them. 21st-century streetcars can be designed for contemporary times, to reflect a community’s sense of itself. New York’s can be sleek and elegant, Seattle’s innovative and green. In Los Angeles streetcars can have sun roofs and surfboard racks. They could all provide free wifi, vending machines and cup holders.

How viable is a nation of streetcar riders? Try this out: Sometimes I play a game with my son to pass the time while we wait for the bus. We count the cars going by and say: “One – two – three – four – five – streetcar!” We count to five because five cars use about the same amount of energy as one streetcar. On some residential suburban streets, you might need to wait ten minutes to get to five cars, but on City Island Avenue, our main thoroughfare, we could have a streetcar every other minute for most of the day for the same amount of energy we already lavish on cars. On busier city streets, they’d come in a constant stream. And whereas five cars might move five to eight people, each streetcar could handle 70 sitting or 100 standing.

Try it next time you are stuck in traffic; if you can count four cars in addition to your own, then imagine yourself relaxing in a spacious, stylish streetcar, with a small number of your fellow citizens, quietly being transported by chauffeur toward your destination through clean, unpolluted air, unhindered by congestion, able to read the paper, text your friend and admire the view. It could happen. It might be sorta thrilling: A streetcar to desire.

Here’s the plan. [3]



Bombardier streetcars, bound for a temporary line at the Vancouver Olympics, arriving at the Port of Tacoma, Washington. [Photo by Port of Tacoma]

Roads to Rails
For short distances, it’s clear we should do everything humanly possible to make walking and bicycling the preferred modes of transportation for as many people as possible. Currently, 49 percent of trips are already three miles or less, and 70 percent of them are taken by car, which suggests a huge potential. The ingredients are fairly simple: Pedestrians and bicycles need their own separate, pleasant spaces for movement — sidewalks and improved bicycle paths — and people need their everyday destinations within reach, whether they are for work, shopping or school. Better, denser towns and cities designed for people are the means to the end of making walking and bicycling the cheapest, healthiest, fastest way to go for some 189 billion trips per year.

Walking and related modes, however, are not ideal when the weather is unpleasant or when we need to travel farther than a few miles. They also don’t work for the very old, the very young and the disabled, who need modes compatible with how they move; and businesses, emergency crews and others need ways to move objects heavier than a person can conveniently carry. To obtain better trades of time for space, we still need vehicles powered by engines to apply greater energy than our bodies can. Small fleets of NEVs can help, streaming people and goods down to that paragon of motor propulsion: the streetcar.

When imagining the streetcar revolution, don’t rely on your experience of public transit today, with long unpredictable waits, dingy subway tunnels and motorbus diesel fumes. Instead, imagine what every city once had — lots and lots of streetcars running all the time (one for every five of today’s cars) along every big street. Your wait won’t be long, and it won’t be uncertain, because thanks to GPS, wireless technologies, smartphone applications, countdown clocks and a glance down the avenue you will know exactly when the next streetcar will arrive to whisk you away. As the transportation planner Jarrett Walker writes: Frequency is freedom.

Streetcars, NEVs, your bicycle and your legs are the distributed beginnings of a new transportation network, reaching into New Town districts across America and bringing people to light rail trains running along major thoroughfares. Light rails are close cousins of the subway and elevated railway, except they run on the ground. They are heavier and faster than streetcars, able to race cars at 60–80 miles per hour. In the future, these local trains will shuttle between nearby cities, delivering people to high-speed rail systems that go cross-state, and eventually cross-country.

America already has a world-class freight rail system, moving 1.7 billion tons of goods each year. Today freight railways connect to trucks for the final delivery; in the future, they will connect to streetcars, and in the cities, the old subway tunnels. Subterranean movements will be set aside for inanimate things, rather than for people. At night specially designed flatbed streetcars will pull up to businesses or neighborhood receiving stations, the post offices of the future. Curb cutouts with loops of side track will provide lading sites out of the main flow. Small containers of standard size, and designed to fit within the large containers used by the shipping industry, will travel by rail and NEV. In the morning NEVs and folks with hand trucks will make deliveries to your door.

Instead of asking the car to do every transportation job for us, as we do today, transportation will be sorted by task. We will choose modes that work better and more efficiently for different distances and prioritize investment according to a formula that prefers human power over railways and railways over cars.



Many people think American railroads are a thing of the past, and while it is true that passenger rail fell on hard times during the late 20th century, the U.S. freight rail system moves 1.7 billion ton-miles of freight (as of 2011), including nearly all of the fossil fuels that power the nation's over 4,800 coal-burning power plants. If the Interstate Highway System were converted to the Interstate Railway System, then we could have fast and furious (and energy-efficient) passenger trains, too. Current rail system: 110,772 miles; current Interstate Highway System: 47,013 miles. Click image to enlarge.

We make this happen by committing roads to rails, literally. Dedicating road space to rails resolves two problems simultaneously. First the roads turn out to be an excellent place to build railways at lower cost. The budgets of most rail projects today are based on an assumption that automobile traffic will continue ad infinitum. For streetcars, sharing the roads with cars necessitates extra staff to steer and see, extra weight for safety, limited choices about alignment (the technical term for where the rails will go), and extra expenses for switching and signaling. These problems are exacerbated for light rail and high speed (trans-region) rail systems that must have dedicated space to operate; they literally have nowhere to go in today’s world because all our land is already given over to established public and private uses. (I shake my fist at you, John Locke!) What remains of the rail lines of the nation are mostly already spoken for by the freight industry (mixing freight trains and passenger trains is not recommended — different speeds, different agendas). As a result, the budgets for current railway plans, like the beleaguered high-speed rail plan for California, are swollen with funds to purchase right-of-ways and construct tunnels, overpasses, elevated lines and other extraordinarily expensive acts of engineering necessary to find a route without disturbing the dominant car.

Making the counter-assumption of no cars provides extraordinary relief — now there is lots of space and reduced costs. Roadways are already engineered for transport, with bridges and tunnels in place. The electricity is already there in the power lines paralleling many roads. Dedicating roads to rail means that capital costs drop dramatically because land acquisition and grading expenses evaporate; it also means eventually we need less land dedicated to mechanized transportation, so we have more room for sidewalks, bike paths, parks and garden cafés. Instead of dedicating a third of our city space to transportation, perhaps we can get by with only a quarter or a fifth, meaning that broad swaths of city land could become available for other uses. Think what we can do with all those parking lots!

Deploying railways down Main Street provides a second great advantage: It competes with the cars that remain. As streetcars on streetcar-only streets become more prevalent, they will force cars into a smaller number of crowded car-only streets. As congestion worsens for automobiles, and fuel costs rise, and free parking — and then all parking — vanishes, more people will see the wisdom of giving up on cars entirely and join the rest of the nation walking, biking and on the rails. You can still get to work and your trip will be faster and more pleasant. Driving will persist in rural areas, where work necessitates infrequent trips over long distances, and on a recreational basis. (I’m particularly fond of the drive over the magnificent Million-Dollar Highway in Colorado.) Driving will become a hobby, not a burden.



Click image to enlarge.

Do you hear that jingling in your pocket? That’s the 20 percent of your income now freed to be deployed elsewhere in the economy. Some of it will go back to transportation, but spent on an as-needed basis. Rather than writing out the insurance, registration and car payments in lump sums each year, regardless of how much you drive, now you pay only when you ride. (Businesspeople call this process replacing fixed costs with variable ones.) Or we could establish a system where everyone makes a down payment — say, 50 percent of what we used to pay — and then all local transportation is free. You show a badge stating that you are a resident of New Oldtown, USA, and climb on board. Exchange privileges give you free access in other towns, too.

To get the process started, we need to redirect funds from roads to rails. In 2008 government at all levels (local, state and federal) spent a collective $182 billion of taxpayers’ cash on capital and operating expenses related to roads and highways; the same year, we spent another $51 billion on transit projects. That’s three dollars for cars for every one dollar for passenger trains and buses. Reversing this ratio would have enormous immediate effects on shared transportation in America without costing taxpayers a cent more than we are already paying.

Construction costs for new streetcar systems in the U.S. over the last decade have run between $2 million and $20 million per track-mile. (Streetcars have grown in popularity over the last decade; as of summer 2012, at least 35 cities had streetcar or light rail lines.) If we assumed that we could achieve the lower end of this range through economies of scale and by building rails on roads without having to deal with car traffic, then a $150 billion investment could buy 75,000 track-miles. If we assume track density and alignments so that everyone lived within a quarter-mile of a streetcar line, then those 75,000 track-miles could serve 18,750 square miles of urban area. If those towns and cities were inhabited at a density of 5000 people per square mile, encouraged to move there by New Town districts, home-to-work rebates and the new system of gate duties on fossil fuels, then those streetcars could serve 94 million people. If in a burst of enthusiasm and economic growth, the residential density pushed up to 10,000 people per square mile (remember that’s only one-seventh of Manhattan density), then 188 million people could ride those streetcars, or 60 percent of the American populace.

In other words, scratches on the back of an envelope suggest that after only a few years’ worth of spending the money we already spend on roads, everyone in the country could have access to a streetcar, assuming that they inhabited happier, healthier, moderately denser locales than where most people currently live. [4]



Transportation in a democracy needn’t be complicated, but it does need to be clever. Here is what not to do: (a) Do not give away the land to railroad companies that then exploit the public; (b) Do not give monopoly access to companies and then limit the fares, thus ruining the companies; (c) Do not provide free roads and subsidies for cheap oil, damaging the economy, national security, and the environment; and please (d) Do not let the government run transportation companies, because then everyone loses. Here is a better way: (e) Let the government own and manage the public infrastructure in the public interest; let companies run the railways to make a profit and serve the people, subject to market competition; and let the citizens ride the rails to success, while speaking politely and specifically about necessary improvements. Click image to enlarge.

What Happened?
I know what you are thinking: If streetcars are so great, why didn’t they succeed the first time around? And don’t we need to know why they disappeared if we ever hope to rebuild them? It’s like a beautiful forest eerily silent because all the animals have been hunted to extinction: We must understand why the forest is empty to fill it again. I don’t think the answer to why the streetcar expired is as simple as some commentators have indicated — that there was a great conspiracy to replace it with automobiles, and that was that (though some unsavory things did happen). Rather, the answer lies in the uneasy institutional relationships surrounding land, transportation and money during the time of the first great streetcar blossoming at the turn of the last century.

The trouble started because city governments thought it was clever to give monopolies to the streetcar companies. In the heyday of the Standard Oil trust and the Selden patent, monopoly was considered good practice in transportation. Granting local, long-term exclusive franchises induced companies to make large upfront investments in infrastructure (the railways and the rolling stock), relieving the government of those costs. In return companies would recoup their expenses plus profits indefinitely through a captive ridership and real estate development.

To limit the monopoly power, however, local governments controlled the fare. At first, both sides agreed that five cents a ride was a fair deal. In the deflationary environment of the late 19th century, when the real value of every nickel was spiraling upward, each fare paid represented accelerating profits for the companies. For a time, they and their real estate subsidiaries made money hand over fist; a list of the richest men in America of 1900 included municipal transit magnates Peter A. B. Widener, Thomas Fortune Ryan and Nicholas F. Brady.

We don’t speak of Widener, Ryan and Brady in the same reverential tones we do of the Rockefellers, Fords and Carnegies because the streetcar kings’ glory days faded fast. Inflation, labor strikes, World War I and competition from electric and motor vehicles overtook the streetcar. Owners wanted to raise fares to keep up their lines, but government, subject to public pressure, refused. (New York Mayor James “Jimmy” Walker became famous by beating back a fare increase in 1928, for example.) Unionization was on the rise, demanding a greater proportion of profits, and during World War I, the War Labor Board instituted mandatory pay raises for railway workers, including on the streetcar lines, to compensate for wartime inflation.

With no way to raise revenues to cover their costs and with development along the lines already peaking, the companies had to make cuts to stay afloat, which meant deferring investment and reducing service. Even though ridership continued to increase through the 1920s, the trams and trolleys crowded with passengers were beginning to fall apart. Meanwhile, the automobile companies — producing vehicles that were newer, faster and affordable, if relatively energy inefficient — had all the capital they needed. After 1931, the Texas Railroad Commission and interstate commerce legislation ensured everyone paid consistent, low prices for gas.

Gas and rubber rationing at home during World War II extended the streetcar’s era for a few more years, but by midcentury, when General Motors, Firestone and Standard Oil of California cobbled together their racket to replace the last streetcars with buses and then close the bus lines, the streetcar industry was economically crippled, the victim of deferred maintenance, high costs and subsidized competition; the GM conspiracy was just the coup de grâce.





Top: Removal of streetcar track, 3rd Avenue, Seattle, 1943. [Photo via Seattle Municipal Archives] Bottom: Concrete pour for new streetcar track, Jackson Street at 2nd Avenue, Seattle, 2013. [Photo by Gordon Werner]

Shared transportation in America is still haunted by the demise of the streetcar and its aftermath. In the late 1950s and early 1960s, government realized it had made a terrible mistake in its handling of the streetcar lines, and responded by making another terrible mistake: It took over transit. With a young president, John Fitzgerald Kennedy, in the White House in 1960, northeast politicians like Richardson Dilworth, mayor of Pennsylvania, and Senator Harrison “Pete” Williams of New Jersey, despairing of ever reversing the flight to the suburbs, saw an opportunity to win federal support to at least bring people back downtown for shopping. Thus began a subsidy war pitting us against us. With one hand, the government subsidized transit as a way of encouraging urban renewal, while with the other hand, it rolled out pavement for cars on a continental scale to help people flee town. In the epic battle of cars vs. transit, in the age of cheap oil, free roads and low-density sprawl, transit couldn’t win, no matter how big the subsidies. And many people questioned why we were writing checks for both in the first place. They still do. Like a gardener who planted two seeds that are now competing with each other to the detriment of both, we have to choose which will survive. One already seems to be failing. [5]

What Business Does Best
Resolving the problems of public transportation means reforming the relationships between government, business and the passenger once again. This time, we have to be realistic about the strengths and interests of each and play to them. Government owns the roads and looks out for the general welfare, for people today and in the future. Business is good at making a profit given a fair and competitive market with clear rules. Passengers know where they need to go and how much money they have.

Here’s what I think we should do. Let’s imagine that the government makes long-term investments in the necessary infrastructure for streetcar and other local rail systems. The public, via our self-instituted government, will own the tracks, signals and maintenance yards and manage them in the public interest on the public land. The people will then rent out the rail lines to private companies to provide transportation services. The companies bring their knowledge of efficiency and the ability to flex and innovate; they also bring their own rolling stock and labor agreements. Passengers get a better bargain as a result.

Every few years, municipalities put out bids for contracts of limited duration, for example, three years. Short-term concession agreements ensure that companies are under the gun to provide excellent service, or the municipality will seek a different vendor next round. Companies are relieved of the capital costs of the rails and the real estate buys that have been the traditional argument for the necessity of long-term arrangements. The public runs the contracts on essentially a nonprofit basis, only asking for rent based on what is necessary to maintain the infrastructure, insure the rails and keep up with inflation; no subsidies are involved, but no profits either to support other aspects of government. Contracts express the public interest: minimum levels of service, coordination across lines, bracketed fares, non-discrimination, electronic notifications and bonuses for on-time service records and minimal passenger complaints. Within those bounds, companies are free to deploy service as they see best, including adding service to enhance profits. They can run more trolleys to accommodate the morning commute or the rush to the ball game.

In some cases, in coordination with the local authorities, companies might collect fares up front on an annual basis from residents, and then everyone could ride for free, with exchange privileges across connecting lines, facilitated by the same technologies that credit card companies use. Private service providers invest profits in advertising, better rolling stock and transit-oriented development (e.g., shopping centers, housing stock) near the value-added transportation corridors, thus enhancing the market and bringing additional private funds into the towns and cities growing around them. New jobs will be created directly in service industries (steering and maintaining streetcars, local freight delivery, track maintenance), in manufacturing supply chains for streetcar construction, and through agglomeration economies generated by connected American neighborhoods, towns and cities.



Detail of Market St. Railway Mural, San Francisco. [Mural by Mona Caron]

Once the streetcar is rooted within communities, then we will have the basis for a high-speed rail network between cities, not before. When streetcars and light rail systems bring people to the periphery, then high-speed rails can develop along the existing highway systems to connect cities across the vast expanses between. (In the meanwhile, temporary garages on the edge of town can store the cars reserved for rural travel.) Over time we transform long-distance travel from cars and trucks to trains, so that the Interstate Highway System morphs into the Interstate Railway System, with the federal government owning, maintaining and coordinating regional rails, and private companies instead of government-owned corporations (like the hapless Amtrak), providing the service. Gate duties alter the economies of fuel and land, and higher functioning American towns and cities facilitate walking, biking and public transport. The goal is to make American travel affordable, pleasurable, sustainable and easy, a system to last for centuries, not just until the oil or the money runs out.

There is one final benefit to turning transportation over to the smooth whirr of electric motors: Those motors will use electricity. To produce it, we could continue to burn the black fossil fuel MacKays [6] or build more radioactive nuclear power plants — or we can see the roads to rails program as a welcome opportunity to get our MacKays from warmer, breezier, brighter sources: the gifts of earth, wind and the fire in the sky. [7]



Editors’ Note

“Roads to Rails” is excerpted from Terra Nova: The New World After Oil, Cars, and Suburbs, by Eric W. Sanderson, published this month by Abrams. It appears here with the permission of the author and publisher.


Notes, Sources and Elaborations


1. Notes on “A Brief Physics Lesson”

Sir Isaac Newton haunts this article. A younger contemporary of John Locke, Newton made major contributions in mathematics, optics, astronomy and mechanics, mostly from a brief, productive 18-month period. Later in life he was Master of the Mint, where he controlled the British money supply, and by fixing an exchange rate between silver and gold in 1717 put the United Kingdom effectively on the gold standard, which the Brits would adhere to until the horrors of World War I forced them off in 1914. David Berlinski, Newton’s Gift: How Sir Isaac Newton Unlocked the System of the World (New York: Free Press, 2012), provides a readable biography; Edward Dolnick,The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World (New York: Harper, 2011), describes his world.

The strange notion that an object in motion will stay in motion perpetually in a vacuum is a restatement of Newton’s First Law of Motion. What a motor does is apply a force; Newton’s Second Law of Motion says that the acceleration of an object is proportional to the force applied and inversely proportional to the object’s mass, which follows from the conservation of momentum and applies to light as well as matter. Although energy was not understood while Newton was alive, the discovery of conservation of energy in the early nineteenth century was entirely compatible with the foundations he had laid two centuries before.

My simplistic description of the physics of vehicles follows David MacKay’s lucid account in Sustainable Energy — Without the Hot Air (UK: UIT Cambridge, 2009), which you can read online or by purchasing his book; see in particular Chapter 3 and Technical Chapter A. You can also read more in Kyle Forinash, Foundations of Environmental Physics (Washington, DC: Island Press, 2010), or any standard undergraduate physics textbook.

The force of friction on a wheeled vehicle depends on the coefficient of rolling resistance. James D. MacIsaac and Dr. W. Riley Garrott provide details on how rolling resistance changes with changing tire pressure in Preliminary Findings of the Effect of Tire Inflation Pressure on the Peak and Slide Coefficients of Friction (Washington, DC: National Highway Traffic Safety Administration, 2002). Well-inflated car tires not only save gas, they are safer to drive on; see Transportation Research Board, Tires and Passenger Vehicle Fuel Economy: Informing Consumers, Improving Performance (Washington, DC: National Research Council, 2006). Typical coefficients of rolling resistance for automobile tires vary from 0.0098 to 0.0138; steel wheels on steel rails have coefficients of 0.0015–0.0035; see Erik Lindgreen and Spencer Sorenson, Driving Resistance from Railroad Trains (Lyngby, Denmark: Technical Univ. of Denmark, 2005). Train cars on a level track have such small amounts of rolling resistance that they sometimes roll down the tracks on a windy day, even though they might weigh 30 tons or more. Did you know the study of friction, wear, and lubrication is called tribology? For more, see tribologists Ulf Olofsson and Roger Lewis, “Tribology of the Wheel–Rail Contact,” in Simon Iwnicki, Ed., Handbook of Railway Vehicle Dynamics (Milton Park, UK: Taylor and Francis, 2006),121–141.

The U.S. Department of Energy and Environmental Protection Agency have collaborated on a useful website called fueleconomy.gov, where you can check out the fuel mileage for different car models in city, highway, and combined driving, back to the 1987 model year; they also have a nifty figure showing where the energy goes when you drive your car — yet another reminder that it is not information that is wanting.

Forinash writes of electric motors: “The limits to efficiency of [electric] motors and generators due to the second law of thermodynamics are exceedingly small. An ideal motor with no friction or other loss can have a theoretical efficiency of more than 99% and real electric motors have been built with efficiencies close to this limit. ... For real electric motors there are mechanical friction losses and resistance. ... Well designed lowhorsepower (<1,000 W) motors typically have efficiencies of about 80%, and larger motors (> 95 kW) have efficiencies as high as 95%” (p. 123). The Nissan Leaf’s motor consumes 80 kW; and the Chevy Volt’s consumes 110 kW, according to their respective websites.

Vaclav Smil, Energy in Nature and Society: General Energetics of Complex Systems (Cambridge, MA: MIT Press, 2007), makes a big deal over the amount of energy different fuels can contain, as do I. Unfortunately some misguided apologists for the fossil fuel industry use this data to argue that we can’t replace the car ever (cf. Robert Bryce, “The Real Problem with Renewables,” Forbes, May 11, 2010), but that’s not to say we can’t have something else (e.g. streetcars) instead. Smil provides some fun energetic comparisons: The energy of a flea hopping (1 x 10-7 J) to the annual global interception of solar energy (5.5 x 1024 J); the power of ephemeral phenomena, from a hummingbird’s flight (7.0 x 10-1 W) to a magnitude 9 earthquake (1.6 x 1015 W); and the efficiency of common energy conversions, from some ecosystems that manage only a paltry 1–2 percent, to a large electric generator with efficiencies of 98–99 percent.

The search for more energy-dense batteries has been underway for a century now. See reviews of the 21st-century state of play by Eckhard Karden, “Energy Storage Devices for Future Hybrid Electric Vehicles,” Journal of Power Sources, 168.1 (2007): 2–11, and A.K. Shukla, et al., “An Appraisal of Electric Automobile Power Sources,” Renewable and Sustainable Energy Reviews, 5.2 (2001): 137–55. Don’t hold your breath.

2. Notes on “A Better Car”

Vehicle occupancies can be found in Adella Santos, et al., Summary of Travel Trends: 2009 National Household Travel Survey (Washington, DC: U.S. Department of Transportation, Federal Highway Administration, 2011), based on calculations from the National Household Travel Survey. Occupancy varies by trip type: commuters average 1.13 people per trip, shoppers and errand-makers 1.78 and 1.84 people per trip, respectively, and socialities, 2.20 people per trip. Alan E. Pisarski, Commuting in America III (Washington DC: Transportation Research Board, 2006), shows that commuting alone varies dramatically between different American cities, from a low of 56.3 percent of trips in New York to a high of 84.2 percent in Detroit in 2000. With streetcars for the commute of the future, no one will have to travel alone.

I calculated energy consumptions per person per mile at usual and maximum occupancy for different modes of transportation. Walking, biking and skating energy consumption were drawn from FitWatch. Automobile fuel consumptions were calculated for combined driving fuel efficiencies reported in fueleconomy.gov for the various models indicated; curb weights and maximum occupancies are from manufacturer websites. Usual vehicle occupancies for different automobile types were derived from averages calculated from the 2009 National Household Travel Survey. Public transportation energy consumption and usual occupancy for the various transit lines indicated were calculated from the 2009 National Transit Database. Maximum occupancies for transit modes were estimated from transit authority websites or estimates from similar lines when I couldn’t find the exact numbers. MTA subway occupancy is based on 200 passenger capacity for a 10-car train. The Staten Island Ferry maximum capacity is for the “Molinari” Class ferries. Vehicle weights for trains are car weights, not including the locomotive. Fuel consumption rates for the Boeing 737 and 747 aircraft were deduced from the graphs provided in Boeing documents, and are estimated for trip distances of 3,000 and 3,400 nautical miles, respectively. Aircraft usual occupancies are based on the maximum occupancies multiplied by the average passenger load factor for 2010 (U.S. Bureau of Transportation Statistics).

Daniel Sperling and Deborah Gordon, “Advanced Passenger Transport Technologies,” Annual Review of Environment and Resources 33 (2008): 63–84, provide an entertaining review of the recent developments of electric, hybrid, plug-in hybrid, and fuel cell cars. David B. Sandalow, ed., Plug-In Electric Vehicles: What Role for Washington? (Washington, DC: Brookings Institution Press, 2009), and colleagues make the case for plug-in hybrids; though wonkish, this book brings together some of the best thinking on how to generate an electric vehicle revolution; many of their recipes could be applied to streetcars and NEVs as well, where the physical challenges aren’t so daunting. My issue with writers like Sandalow and Sperling is their fundamental, undeniable, unshakeable (it would seem) assumption that personal automobiles are the only way. It’s a bit like the Catholic Church in 1517. Be careful who is knocking at your door!

A note on fuel cell vehicles: Jeremy Rifkin, The Hydrogen Economy (New York: Tarcher, 2003), gives an impassioned appeal for the hydrogen economy based on fuel cell technology for cars; however there are numerous debilitating technical problems, which, it seems, may keep chemical engineers busy for some decades (see Rakesh Agrawal, et al., “Hydrogen Economy — An Opportunity for Chemical Engineers?”, AIChE Journal 51.6 (2005): 1582–89), the most important of which may be the small size of hydrogen gas molecules (literally just two protons), which means hydrogen is difficult to bottle up. Hydrogen fuel cells also are carriers of energy since hydrogen gas does not exist in any quantities in nature (it’s too reactive to stay around long). So hydrogen gas as a fuel needs to be produced from another fuel, which might be renewable or might be a fossil fuel; either way each energy transition costs energy, which means, for now fuel cells are just another version of the Siren song, albeit a bubbly, explosive leitmotif.

Who Killed the Electric Car? was made by Chris Paine (Sony Pictures, 2006). More details about the Nissan Leaf are available from the Nissan website, including costs of charging; costs estimated for the battery follow comments Nissan executives made to the Wall Street Journal and other outlets — see Josie Garthwaite, “Nissan: LEAF, Like Other Electric Cars, Will Lose Money at First,” GigaOM, May 17, 2010,  and Eric Loveday, “WSJ: Nissan Leaf Profitable by Year Three; Battery Cost Closer to $18,000,” Autoblog, May 15, 2010.

Learn more about neighborhood electric vehicles (NEVs) in Sam Abuelsamid, “What Is a Neighborhood Electric Vehicle (NEV)?”, Autoblog, February 6, 2009.  J. Francfort and M. Carroll, Field Operations Program: Neighborhood Electric Vehicle Fleet Use? (Idaho Falls, ID: Idaho National Engineering and Environmental Laboratory, 2001), describe operational characteristics of NEV fleets, and Roberta Brayer, et al., Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet (Idaho Falls, ID: Idaho National Laboratory, 2006), describe guidelines for deploying NEV fleets in the future, based on studies done by the Idaho National Laboratory. Brayer and colleagues write: “NEVS are designed to meet most light-duty applications, such as people movers and light utility use. NEVs are significantly faster than golf carts, which typically have top speeds of 12 to 15 mph. Typical NEV payload capabilities range from 600 pounds to 1,000 pounds (including passengers). When the batteries are functioning properly, a fully functional range is typically around 30 miles for each full charge in mild climates. In cold climates, the range can be reduced by as much as half. Options are available, such as fast charging, that allow the range to be extended to over 100 miles per day by opportunity charging in 20 to 30-minute increments throughout the day.” A. Moawad, et al., Light-Duty Vehicle Fuel Consumption Displacement Potential up to 2045 (Argonne, IL: Argonne National Laboratory, 2011), share a similar vision of smaller, lighter, more efficient vehicles in America through 2045 and back it up with simulation of over two thousand different vehicle types. For a beautiful vision of what is possible for these kinds of vehicles, see William J. Mitchell, et al., Reinventing the Automobile: Personal Urban Mobility for the 21st Century (Cambridge, MA: MIT Press, 2010).

3. Notes on “A Better Streetcar”

For the good news about streetcars, see Gloria Ohland and Shelley Poticha, eds., Street Smart: Streetcars and Cities in the Twenty-first Century, 2nd ed (Oakland, CA: Reconnecting America, 2009). Edson L. Tennyson, Impact on Transit Patronage of Cessation or Inauguration of Rail Service (Washington, DC: Transportation Research Board, 1998), makes the case for streetcars over buses; for more fun and less reverence, see The Infrastructurist, “36 Reasons Streetcars Are Better Than,“ June 3, 2010 (via Internet Archive). A lot of writing about streetcars is nostalgic (e.g., John W. Diers and Aaron Isaacs, Twin Cities by Trolley: The Streetcar Era in Minneapolis and St. Paul, Minneapolis, MN: Univ. of Minnesota Press, 2007) or dismissive (e.g., David W. Jones, Mass Motorization and Mass Transit: An American History and Policy Analysis, Bloomington, IN: Indiana Univ. Press, 2010), but we have more than enough experience with streetcars to know what a lovely, efficient, cost-effective solution they are for urban transportation, which is why they have seen a renaissance, in spite of auto-dominated streets. In 2009, the United States had 74 urban/suburban railway systems in operation (commuter rail, heavy rail, light rail, including streetcars, cable car and trolleybus). They collectively provided 4.5 billion rides covering 30.3 billion passenger-miles in 2009. What streetcars really need, though, is streetcar-only streets. One sign of the potential for streetcars is the success of bus rapid transit (BRT), which is essentially running buses like trains, but without rails. I like streetcars better for reasons described in the text, but in a pinch will go with BRT, too. See Robert Cervero, The Transit Metropolis (Washington, DC: Island Press, 1994), and Annie Weinstock, et al., Recapturing Global Leadership in Bus Rapid Transit: A Survey of Select U.S. Cities (New York: Institute for Transportation and Development Policy, 2011), for more.

The streetcar counting game depends on the amount of energy required per vehicle-mile for cars vs. streetcars. For example, one Seattle Streetcar trundling down the street in 2009 used 7.98 kWh/ vehicle-mile, which is equivalent to the energy used by 3.95 Ford F-150 pickups traveling the same mile, 5.99 Honda Accord LXs, or 10.93 Toyota Priuses. The actual streetcar-to-car count in your traffic depends on its vehicle composition; five is approximately what I see on City Island in the mornings, where there seems a proclivity toward pickup trucks and SUVs even though the Bronx is a long way from the countryside and rarely sees lasting snow any more.

Of course you could play the same game on a per-passenger basis, in which case at average occupancy, 1.29 streetcar passengers could go by for the same amount of energy as every Prius passenger, 2.19 streetcar passengers for every Accord passenger, and 3.74 streetcar-straphangers for every pickup truck rider. That is a potential 29 percent, 119 percent, and 274 percent improvement in energy efficiency of streetcars over those personal motor vehicle types, respectively.

According to the historical census from the U.S. Bureau of the Census (1975; Series Q264-273), the apex of streetcar development in America was 1917, when the streetcar network extended over 44,835 miles of track servicing 32,548 miles of streetcar line (some lines had multiple tracks.) According to William Mott Steuart, Street and Electric Railways, 1902 (Washington, DC: U.S. Bureau of the Census, 1905), in 1902 there were 813 street railway companies serving 4,774,211,904 fare-paying passengers with 1,144,430,426 carmiles traveled (Steuart, Table 7). Although one might suspect Steuart’s precision, the numbers are impressive considering the national population in 1902 was only 79,163,000, or just 26 percent of the 2010 American population, which means in 1902, the average person took 60 streetcar rides. Forty-three of 48 states plus the District of Columbia had streetcar service that year, not only in 33 large cities with population of 25,000–100,000 people, but also in 46 towns with population less than 25,000.

4. Notes on “Roads to Rails”

Many works extol the advantages of walking, bicycling and other forms of personal mobility: see Robert Hurst, The Art of Urban Cycling: Lessons from the Street (Guilford, CT: Globe Pequot, 2004), David Byrne, Bicycle Diaries (New York: Viking, 2009), and Jeff Mapes, Pedaling Revolution: How Cyclists Are Changing American Cities (Corvallis, OR: Oregon State Univ. Press, 2009), on bicycling, the most energetically efficient form of personal transportation ever invented; Rebecca Solnit, Wanderlust: A History of Walking (New York: Penguin, 2001), on walking; and Katie Alvord, Divorce Your Car!: Ending the Love Affair with the Automobile (Gabriola Island, BC: New Society, 2000), and Chris Balish, How to Live Well Without Owning a Car: Save Money, Breathe Easier, and Get More Mileage Out of Life (Berkeley, CA: Ten Speed Press, 2006), on getting out of your car. The number of short trips less than three miles is from analysis of the 2009 National Household Travel Survey. The current rail system, including freight trains, is described in Freight in America: A New National Picture (Washington, DC: U.S. Department of Transportation, 2006); Association of American Railroads, Railroad Facts 2010; and Surface Freight Transportation: A Comparison of the Costs of Road, Rail, and Waterways Freight Shipments That Are Not Passed on to Consumers, Report to the Subcommittee on Select Revenue Measures, Committee on Ways and Means, House of Representatives (Washington, DC: U.S. Government Accounting Office, 2011). Read Jarrett Walker’s sage advice in Human Transit: How Clearer Thinking about Public Transit Can Enrich Our Communities and Our Lives (Washington, DC: Island Press, 2011).

Transportation planners use the concept of “level of service” (LOS) to determine transportation capacities. Streets can move more people but pay the price in delays, congestion, and pollution. To estimate maximum capacities, I used statistics on LOS-D, which is not good, but not the worse it could be. Sidewalks with LOS-D levels can accommodate 900 persons per hour per foot of width; cars move 11,000 vehicles per day per lane at the same LOS. See U.S. Federal Highway Administration, Manual on Uniform Traffic Control Devices for Streets and Highways (Washington, DC: U.S. Department of Transportation, 2009).

Richard Gilbert and Anthony Perl, Transport Revolutions: Moving People and Freight Without Oil (Gabriola Island, BC: New Society Publishers, 2010), provide a detailed analysis of the space and energy uses of freight and personal transportation compared to other modes. They conclude, as I do, that grid-connected electric rail is the most flexible and efficient way to move us and our stuff. Their perspective is more global than mine; in particular, see their analysis for China. Highly recommended. Also see J. H. Crawford, Carfree Cities (Utrecht, The Netherlands: International Books, 2002).

To read the detailed difficulties of the California High-Speed Rail Plan see the newly released Revised 2012 Business Plan. For some academic viewpoints on the current debate over high-speed rail, see Andrew Ryder, “High Speed Rail,” Journal of Transport Geography 22 (2012): 303–05; Bradley W. Lane, “ On the Utility and Challenges of High-Speed Rail in the United States,” Journal of Transport Geography 22 (2012): 282–84; Adib Kanafani, et al., “The Economics of Speed — Assessing the Performance of High Speed Rail in Intermodal Transportation,” Procedia — Social and Behavioral Sciences 43 (2012): 692–708; and Javier Campos and Ginés de Rus, “Some Stylized Facts about High-Speed Rail: A Review of HSR Experiences around the World,” Transport Policy, 16 (2009): 19–28.

Transportation funding is summarized by the U.S. Bureau of Transportation Statistics (2012). Construction costs for streetcars are from Ohland and Poticha (op cit.).

5. Notes on “What Happened?”

For more on empty forests, read Kent H. Redford, “The Empty Forest,” BioScience 42.6 (1992): 412–22.

Although I disagree with his interpretation that the streetcar’s decline was inevitable or that they are forever gone, Jones (op cit.) nicely lays out the statistics, documenting the rise and fall of the street railways. See Scott L. Bottles, Los Angeles and the Automobile: The Making of the Modern City (Berkeley, CA: Univ. of California Press, 1991), and John Anderson Miller, Fares, Please! A Popular History of Trolleys, Horse-Cars, Street-Cars, Buses, Elevateds, and Subways (New York: D. Appleton Century, 1941). The list of streetcar magnates is from Kevin Phillips, Wealth and Democracy: A Political History of the American Rich (New York: Broadway, 2003). Senator Williams is perhaps more famous for his conviction for bribery and conspiracy in the “Abdul scam” or Abscam case of the late 1970s, wherein Federal Bureau of Investigations personnel disguised as a wealthy Middle Eastern sheik offered bribes to a number of U.S. politicians, including gullible Pete.

In 1962, President Kennedy called on Congress to approve federal capital assistance for mass transportation, saying “To conserve and enhance values in existing urban areas is essential. But at least as important are steps to promote economic efficiency and livability in areas of future development. Our national welfare therefore requires the provision of good urban transportation, with the properly balanced use of private vehicles and modern mass transport to help shape as well as serve urban growth.” In 1964, the Urban Mass Transportation Act passed and was signed by President Lyndon Johnson. This act required coordinated planning between mass transit and personal transport in all urban areas with more than fifty thousand people, and opened up the first federal funding sources for public transportation. For a detailed account of the “golden age” of urban transportation planning, see Michael N. Danielson, Federal-Metropolitan Politics and the Commuter Crisis New York: Columbia Univ. Press, 1965.

6. Note on MacKays

To measure the flow of energy in time, I like the suggestion of David MacKay to use kilowatt-hours per day. In Sustainable Energy — Without the Hot Air, MacKay shows in a straightforward, no-nonsense way the physics of different forms of energy generation and consumption. As MacKay writes, one kWh per day is “a nice human-sized unit,” since most personal household devices use energy at that scale. For example, one 40-watt bulb left on for 24 hours would use almost 1 kWh per day; your 1000-watt microwave left running continuously day and night would use 24 kWh per day. One kWh per day is also roughly equivalent to the amount of work you or a human servant can do in a day. MacKay’s book is so clear and his contributions are so important that I propose we name a new unit of energy after him: the MacKay, equivalent to 1 kWh per day.

7. Notes on “What Business Does Best”

The current financing model for transit is ripe with the problems of public managers, subject to the ballot box, trying to run a transportation company. Consider the case of New York City Transit, managed by the Metropolitan Transportation Agency (MTA), by far the country’s largest and best-used transit agency. Approximately one-third of all public transit trips made in the country each day are made on vehicles owned and operated by the MTA; a city the size of Seattle rides on the subway each night, and yet even with a massive customer base in the country’s densest city, the New York subway and buses haven’t been able to break even. The problem is not the energy costs, which in 2010 were less than 5 percent of the operating budget (a mere $131 million), or even depreciation of the rolling stock, switches and rails, estimated at $1.29 billion (or 15 percent of the budget); the problem is the labor costs, which are 70 percent of the budget ($5.76 billion including postemployment pensions and other costs paid to former transit workers). Similar high labor costs plague transit systems from Chicago to Denver to San Francisco. See Ken Gwilliam, “A Review of Issues in Transit Economics,” Research in Transportation Economics 23.1 (2008): 4–22, and the National Transit Database. For more on the MTA, see Tri-State Transportation Campaign, “Transportation 101: What’s Up with the MTA?”, and then try to decipher the MTA’s own budget numbers available online.

To put these big numbers in perspective, consider them on a per-fare basis. To break even without government support, each of the 2.31 billion paying passengers on New York City Transit in 2009 would need to pay a full fare of $2.50 just to cover the costs of the people driving the trains, staffing the tollbooths, running the back office, and on retirement from the system. A fare of $3.60 would cover all operating costs. However current fares are $2.25 per ride, and after various discounts and reduced price schemes, the average fare paid plummets to only $1.50 per rider actually received by the system, which leaves a several billion dollar hole each year in the MTA budget — a gap currently plugged by dedicated taxes on property, mortgage recording, business licenses in a seven-county region around New York City, and the proceeds from the RFK Bridge connecting Manhattan, Queens and the Bronx.

Meanwhile the longest commutes in the nation? Not stuck in traffic in Los Angeles. Not trapped on the highways around Atlanta. The longest commutes are for the poor straphangers in Queens County and Bronx County, New York, for whom public transportation is the right choice economically, patriotically and environmentally, but which returns them long, slow, packed rides, based on schedules enforced by labor union rules and lack of investment in street-level infrastructure. See John McCormick and Tim Jones, “New York City Area Has Among Longest U.S. Commutes, Census Estimates Show,” Bloomberg News, Dec. 14, 2010, for overview, and Brian McKenzie and Melanie Rapino, Commuting in the United States: 2009 (Washington, DC: U.S. Census Bureau, 2011), for details. The entire story is remarkable, unsustainable, and in need of change.
Share This Story

RELATED POSTS


Mapping Liberty Plaza


An Interview with David Burney: On New York and the 21st-Century City-State


What Does Fiction Know?


Scarcity contra Austerity


South Africa: From Township to Town



RSSSubscribe to Comment Feed

Comments (3)   |   JUMP TO MOST RECENT >>

Interesting article.
I just have a correction to submit. The two Bombardier streetcar which arriving ar the port of Tacoma are Bombardier street car from Brussels : I take it everyday, there is the STIB (Société des Transports Intercommunaux Brusselois / Brussels Intercommunal Transport Company) logo and website.

We're glad you found the article interesting. That photo was taken by the Port of Tacoma and shows Bombardier Flexity streetcars destined for Vancouver, B.C., where they were used during the 2010 Olympics. Bombardier Transportation (which is headquartered in Germany) also supplies Flexity streetcars for STIB in Brussels. As you note, the logo seems to indicate that STIB was the final destination for these cars. We've updated the caption to avoid any confusion.
— Eds.
Nassk
06.10.13 at 02:55

definitely an article that is on everybody's mouths, but not sure I support it completely. There are many other things to consider. You show some iamges of the streetscars in Toronto, where I happen to live and do not believe that the streetscars work at all. It is true they have to fight their way with the vehicular transit but still the current network does not have the capacity for the demand thus most people still find the car the best way to move around... btw I do not own a car so I depend on public transportation and fully support public transportation in urban center.
But with all that said, if it is a fuel issue Texas has implemented electric buses which work very well and the best thing there are not tracks. In Toronto the tracks present a hazzard to bikes and pedestrians, I've seen bikers fall and hurt themselves when the wheels get trap in the tracks, and for pedestrians, well no need to say more.
On top of all this streetscars still affected by traffic lights, weather, accidents, etc. thus if possible in dense urban centers subway will be the way to go.
One more thing, in your article I didn't see Dresden mentioned, now that is an example for Light Rail System, many of their tracks have grass infills which contribute to reducing the heat island effect, none of the examples shown addressed this issue.
Anyhow, there is lots to talk about this issue and in the right areas streetscars will be a good choice I just don't think that they are 'the' choice.
socorro
06.20.13 at 03:28

I love the enthusiasm of this essay. However, I have some concerns that I would want addressed before I could buy into the vision:

1.) The first major focus of the essay is on the energy efficiency of different modes of transportation, but when people choose how to transport themselves, energy efficiency is far from one of the top criteria they consider. I'd guess people consider a.) Ride quality, b.) Ride time, c.) Cost, and d.) Safety first, with efficiency somewhere farther down the list.

2.) In the past 60 years, during the age of the automobile, people have consistently chosen driving over using any form of mass transit. The essay contends that the public will prefer streetcars, once many roads are given over exclusively to them, and driving becomes so onerously slow that it no longer saves time to drive in the city. But I would contend that people don't like having their behavior changed for them - they prefer to choose to change their own behavior. We can change cities, and even create transportation systems that make cars obsolete, but we can't *force* them into obsolescence for the sake of the system of our choosing.

3.) I'm dubious that streetcars will be profitable for private companies to operate. It's my understanding that the vast majority of mass transit systems do not recover operating costs from rider fares. Also, I'm concerned that a private operator may find a way make the streetcars profitable, but at a cost to urban social justice. (What is the point of running trains frequently when more of the disabled and elderly need them - in the middle of the day or late at night?)

I really like the idea of NEV's taking on a much larger role in addressing the last mile problem for transportation networks. This is a fascinating discussion and I look forward to seeing watching how this we-can-do-better-than-cars discussion unfolds.

Fleur
07.02.13 at 07:07



LOG IN TO POST A COMMENT
Don't have an account? Create an account. Forgot your password? Click here.

Email


Password




Donate to Places: Your Support Makes Our Work Possible



ABOUT THE AUTHOR

Eric W. Sanderson is a senior conservation ecologist in the Global Conservation Programs of the Wildlife Conservation Society.
More Bio >>

DESIGN OBSERVER JOBS